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(U) SUMMARY (U) 

(U) Recent development and production experience have shown that 
DU and WA are excellent materials for application in anti-tank pro- 
jectiles. Each material can be processed to yield unique combinations 
of mechanical properties that can be established to satisfy the enviror- 
ment that each individual cartridge will experience. 

(U) From a producibility standpoint, each material has Its advan- 
tages ard disadvantages. If a review were conducted at this point 
in time, the reviewer would tend to conclude that the producibility 
of the materials Is essentially equal. However, since one of the 
major disadvantages of DU is the lack of production experience, it 
is likely that DU may eventually be considered more producible than 
WA once that experience is acquired. 

(U) A cost comparison of equivalent DU and WA cartridges (the 
XM774 was used for estimating purposes) was conducted, If the life 
cycle of a large quantity is considered, the unit cost of each version 
was found to be approximately equal (the DU cartrldge cost was one 
percent cheaper). 

(U) Considering the dramatic difference in raw material costs - 
DU being approximately ten to thirty times cheaper - this result 
warrants further explanation. A main contributer to the cost parity 
is the fact that the comparison was conducted on a full loaded and 
lot accepted cartridge where the cost of the penetrator represents a 
maximum of one-third cf the overall cost. Secondly, a life-cycle 
analysis considers demiliteriration cost or value. The WA core will 
have a significant scrap value while the CU core will require a 
nominal cost for disposal. If the acquisition cost is considered, 
the DU cartridge is found to be 7% cheaper, due entirely to the 44% 
cheaper CU penetrator cost. 

(U) It is likely that the decision maker would be influenced 
more by a multi-million dollar present cost difference than by a 
theoretical reimbursement in 20 - 30 years. The reality of a signifi- 
cant acquisition cost difference gives the DU a favorable balance. 

(U) When the inherent penetration performance of the two materials 
are compared, the DU is not only a superior armor penetrator, but in 
fact is required in order to penetrate modern targets with modern ammurii- 
tion. 

(U) Finally, if the safety, environmental and deployment impli- 
cations of the two materials are considered, it becomes readily apparent 
that WA can be treated similar to any other metal, while DU requires 



a host of special considerations. 

(U) Little, if any, special controls are requfred during manu- 
facture and testing of WA, while each step in the deployment chain 
rust be analyzed from a worst case safety and environmental stand- 
point for the DU. The 105mn XM774, the Army's first anti-tank 
projectile utilizing DU, served as the standard bearer. It is 
becoming apparent that the precedents in terms of special studies and 
tests set by the XM774 will apply to the DU projectiles that follow, 
and that the material acqufsition system will be more adaptable to 
cartridges utilizing DU in the future. 

(C) If an arbitrary tabulation of the advantages and disadvantages 
of DU and WA were formulated, it might take the form of Table 1. The 
inherent superior performance of DU over WA, combined with the minor 
cost advantage more that compensates for the safety and environment 
requfrements and gives the CU an overall advantage. As a result of 
production experience with both materials, the margin of that advantage 
is net as wide as previously expected. 

Table 1 - (U) Sunvrary of Advantages and Disadvantages of CU and WA 
as Penetrator Materials 

Producibility 

cost 

Safety, Environmental and 
Ceployment 

Performance 

Overall 

DU "A - 

Even Even 

+ 

+ 

++ 

-- 

+ 



II. (C) Background (U) 

A. e Tungsten (U) 

(U) During the late 1950's the primary material utilized 
for kinetic energy, armor piercing projectiles was tungsten carbide. 
Its extreme hardness (Rc 55~). although difficult to machine or form, 
combined with its relatively high density (approximately 13 gm/cc) 
allowed it to be efficiently packaged in a small volume and provide 
a quantum jump in penetration performance against single plate targets 
over its nearest competitor, high carbon steel. The M392 (developed 
by the Unlted Kingdom) was a prlme example. 

-With the advent of spaced armor targets, such as 
NATO medium double and heavy triple (Circa 1960) it was quickly 
discovered that a tungsten carblde penetrator was susceptible to 
break-up against even a thin (e.g. lOnan) front plate and could be 
rendered ineffective against the remaining plate 

ti. 
>n a spaced array. 

(U) The United Kingdom was one of the first to respond 
to this problem by developlng the L52 (M728) which replaced the 
tungsten carblde core and cap with a 93 percent tungsten/7percent 
binder tungsten alloy (WA) of similar geometry but heavier due to the 
higher density of the WA (17 gm/cc). A parallel effort In the US 
was conducted during the same 1965 - 1972 time frame, the 152mml 
XM578 Cartridge Development Program to support the MDT-70 tank. - 

5 

The XM578 Program selected a 97.5% tungsten/2.5% binder tungsten 
alloy (density of 18.5 gm/cc). The core was encased in a tapered 
maraging steel jacket to provide the necessary inbore support due to 
the high acceleration environment of the 152rrm1 Gun. 

(U) With the terminatlon of the Program and the 
initiation of the XM-1 Tank Program, a need for a modern 
105mm Anti-tank, Kinetic Energy Projectile. Picatlnny Arsenal responded 
to this tasking by utilizing the technology gained in the 152nwn 
Program - specifically the subpEojectile - and adapting it to the 105nnn 
Gun by means of a saddle sabot. The 97.5% tungsten alloy was again 
selected from all avallable candidate materials. However, a new 
process of swaging, or radial cold working was developed by Picatinny 
that resulted in improved core mecjhanical properties and substantially 
improved penetration performance. 

(U) The direct adaption of the Xl4578 sheath/core 
assembly was known to be less efficient than a monolithic tungsten 
alloy core of the same weight (and smaller diameter). The first 
steps in this evolutionary process were taken with the XM735El 
and E2 where the volume of tungsten was the expense of 
the maragfng steel. The final research and destgn of 
the XM735. that was type classified M735. contained aPProxfmatelY 



one pound more WA penetrator than did the origin$.J XM735 design.7 

(U) A parametric study was conducted in FY73-74 to 
characterize the performance capability of a family of constant weight 
(eight pound) penetrators manufactured from both 97.5% tungstel a;;;y 
and depleted uranium alloyed with 3/4 weight percent titanium. 
following design features were considered: 

Core Dia (mm) Core Weight (lb) 

32 8.0 

Core L/D 

10.7 

8.0 
* 

13.3 

24 8.0 15.5 

m These penetrators were evaluated against single 
and triple targets. The 28mm was chosen as the most attractive 
candidate for further development, and it eventually became the XM774 - 
originally with both tungsten alloy (WA) and depleted uranium (CU). 
The 24mm diameter proved the most efficient against spaced armor arrays 
and only marginally superior versus monolithic targets. Given the 
preponderance of monolithic targets in that pre-special armor era, 
coupled with the difficulty envisioned to adapt the early generation 
sabot designs to support a very long, thin core, 26n was an cppro- 
priate choice. A second exploratory development program was conducted 
during FY76 wherein a 2611~s mid oint was evaluated and determined to 
be superior (In both WA and DU P to the parent 28mn. The configyration 
of the XM774 was formally changed to 261mn, as it remains today. 

? 
When the final series of Tripartite Trials - 

Growth Potentia firings were scheduled for December 1977. the Ballistic 
Research Laboratories embarked on 
capabilities of the 105tmn M68 Gun. 

fOprogram to further exploit the 
Their review of the Picatinny 

Arsenal study convinced them that the original 24mm geometry, modified 
to increase the L/O from 15.5 to 18.0, could be a functional, superior 
item. This basic design later evolved into the penetrator for the 105mm 
XM833 and the 12Omm XM82g. 

(U) Testing of the tungsten version of the XM829. in 
this case the 90% alloy, fired in the July 1979 Germany trials. demon- 
strated that despite occasional core failure at hi 

$1 
temperature. 

impressive penetration performance was obtainable. 

9. 0 Depleted Uranium (0) 

(U) The availability of depleted uranium (OU) increased 
during the 1950's to the point where its application could be considered 
fo;g;o;;Atqmic Energy Commission - now Department of Energy (DOE) - 



(U) Early reactor designs required DU rods as fuel 
sources. Several manufacturing facilities were constructed to satisfy 
the high tonnage requirements of DU rods necessary for the production 
of weapons material and the fledgling commercial electrical generation 
industry. As the second generation of reactors were installed in the 
late 1950 - early 1960's, reactors that did not use DU as a 
material and facilities became available for alternate uses. 

fyel, both 

(U) All three armed services began to experiment with 
the material for various applications. The initial Army work was 
centered at the US Army Material and Mechanics Research Center. 
Watertown, MA. Considerable research was conducted on alloy develop- 
ment as well as mechanical and chemical properties of various candidate 
compositions for military use. 

(U) One of the Army's first applications of DU was as a 
ballistic weight in the spotting round for the Davy Crockett missile 
warhead. A four alloy "U'Quad" was used for experimental tests on the 
105 and 120mm Delta APFSDS Program in the early 1960's. The Delta 
Program (which evenutally evolv 

e4 
into the 152mm XM578) chose tungsten 

alloy as a penetrator material. 

m The DU candidates at that time had two generic 
problems: the newness and complexity of the various alloys led to 
lot-to-lot inconsistency, and a direct comparison of DU and WA showed 
the WA to be at least equal in penetration performance. Given the 
target requirement of that time frame (six inches of armor at 6Oo), 
the equal performance of DU and WA is understandable. 

(U) The Army's lack of continuing interest in end item 
DU development during the 1960's was not typical of other services. 
The development of the Navy's PHALANX ship fired, anti-missile pro- 
jectile initially considered a wide spectrum of candidate materials 
and eventually selected the U-2Mo alloy. The Air Force (AF) GAU-8A 
Program, a small, rapid fire projectile designed to attack the top 
of a tank when fired from the A-10 aircraft, selected U-3/4Ti. 

(U) The AF GAU-8A completed development in the mid- 
1970's and was deployed to NATO forces in Europe in 1978. The 
PHALANX Program experienced a series of administration and funding 
problems and production was delayed until 1979. 

* The Army's interest in DU was reactivated in 1973. 
In an effort to fully exploit the capabilities of the 105mn M68 Tank 
Gun. all design options were reconsidered. Several factors had changed 
since the Army's earller experiments with DU. The requirement to 
defeat a heavy, monolithic target at nominal ranges had evolved into 
a requirement to defeat a wide spectrum of NATO standard targets includ- 
ing a heavy triple spaced array, and hints of the development of much 

5 
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more complex and difficult target descriptions loomed on the horizon. 
The development of DU alloying and manufacturing techniques had also 
advanced. particularly in the Department of Energy (DOE) laboratories. 

(U) The 105mm "Growth Potential" Pgogram, the Explor- 
atory Development Program that produced the XM774 , considered all the 
options and requirements and selected U-3/4 Ti as the penetrator 
material. It was determined, based on field testing, that the use of 
DU was necessary to satisfy the performance requirements. 

(U) The XM774 established a precedent for tank ammunition 
such that all major development items that have followed (e.g. 105nnn 
XM833 and 120mm, XM829) have.selected DU. 

(U) A summary of the historical evolution of these 
materials for use in munitions is shown in Table 2. 

Table 2 - (U) Historical Evolution of Tungsten Alloy and Dep?eted 
Uranium in Conventional Munitions 

TIME FRAME_ 

1940 - 1950 
1950 - 1960 
1966 - 1975 
1975 - 1980 

TIME FRAME 

1950 - 1965 
1965 - 1975 
1965 - 1975 
1975 - 1980 

HISTORICAL EVOLUTION -- w 
TUNGSTEN 

MATERIAL -- 

Steel 
WC 
WA 
WA - Swaged 

DEPLETED URANIUM 

TYPE 

AP Shot 
PPDS 
APDS 
APFSDS 

MATERIAL TYPE -- 

U 
U-TI. QUINT QUAD, MD 
U-TI, QUINT QUAD, NO 
U-3/4 TI 

Experimental 
Small Cal 
KE Experimental 
APFSDS 

WC = Tungsten Carbide 
WA = Tungsten Alloy 
U= Uranium (general) 
TI = Titanium Alloy 
QUINT = five alloying elements 
QUAD = four alloying elements 
AP = Armor piercing 
APES = Armor piercing, discarding sabot 
APFSDS = Armor piercing, fin stabilized, discarding sabot 



III. (U) Manufacture and Producibility (U) 

(U) Both DU and WA offer the penetrator designer and the 
metallurgist a wide range of physical and mechanical properties from 
which to choose. Unlike more conventional metals, these alloys can 
be processed to yield high strength as well as high toughness and 
high ductility that are not simultaneously achievable in 
While both alloy systems require tight process controls, 11 

ther alloys, 
each has 

distinct differences in terms of sensitivity to variatfon during high 
volume production of penetrators. 
produced in large quantities; 

To date, tungsten alloys have been 
experience with DU, manufactured to 

the stringent XM774 requirements, has yet to be demonstrated. The 
outline of each manufacturing process that follows will serve to high- 
light some of these differences. 

(U) Manufacture of the tungsten alloy penetrator starts 
with ammonia paratungstate (APT) and elemental powders of iron and 
nickel. The APT is oxidized and then reduced to elemental powdered 
tungsten. The powders are then blended with the proper proportions 
of each powder and subsequently hydrostatically pressed to cylindrical 
preform. Each pre-form is then sintered in a hydrogen atmosphere at 
a temperature near the melting point of the alloy. The sintered rod, 
in some applications, undergoes optional heat treatment. The sintered 
bar is then reduced mechanically to a smaller dlameter by a radial 
swaging machine. Reductions in area between 12% and 25% may be appro- 
priate depending on the alloy and the penetrator design. The swaged 
blank is then final machined. The critical process steps, once given 
a fully developed process, are sintering. heat treatment and swaging. 
The penetrator performance appears to be most sensitive to the swaging 
conditions. 

Table 3 - (U) Physical Propertfes of DU & WA 

TUNGSTEN ALLOY DEPLETED URANIUM 

Low - HIGH - Low HIGH 

Tensile Strength (kpsi) 
Yield Stren th 
Elongation 9 %) 

(kpsf) 

Fracture toughness 
@ -5O'F (Klc) 

Modulus 
Hardness (Rc) 

130 215 165 220 
75 200 65 200 
'1 .o 35.0 5.0 32.0 

60,000 27.000 43,000 

40 16 24 
26 36 58 

(U) Depleted Uranfum. typically begfns in the core 
suppliers plants as UF4 (green salt). The UF4 is blended together 
with magnesium and heated until a spontaneous exotheric reaction 
begins which yields a uranium derby and a by-product of magnesium 



floride. The derby js charged into a vacuum furnace with titanium 
(0.75%), melted and cast into cylindrical ingots. The ingots are 
then extruded or rolled into a rod. A rod is cut into penetrator 
lengths and heated in a vacuum furnace to a solutioning temperature. 
The bars are then water quenched and aged before final machining. 

(U) Some observations on the important differences 
between WA and DU include the factor of approximately two greater in 
the elastic modulus of WA over DU. This extra stiffness is an advan- 
tage in the gun tube where bending or column failure of the forward, 
unsupported length of the penetrator could present a problem. How- 
ever. it is generally believed that the low modulus of DU with its 
associated low velocity of stress wave propagation is a primary reason 
for its superior penetration performance. 

(U) Another notable difference Is the strain rate 
sensitivity of the DU as compared to WA. Whjle OU strength changes 
very little as the rate of tensile test changes from lo- /set to 
lO/sec; WA can exhibit a 30% increase In strength. Although both 
materials undergo a temperature transition, the ductility and tough- 
ness of WA does not appear to degrade as drastically as that of DU 
when tested at temperatures as low as -5OOF. 

(U) Over the last five years improvements have been made 
in the mechanical properties of both WA and DU alloys. Typical 
ranges of mechanical properties are shown in Table 3. Because the 
WA is a metal matrix composite, it probably offers more areas for 
advancement or refinement in mechanical properties. 

(U) Mass production of a penetrator item from eitr;er 
of these alloy systems has built-in advantages and disadvantages 
(Table 4). The primary advantages of WA are its ability to combine 
high dynamic strength with good low temperature toughness. This is 
further enhanced by a proven ability to achieve these conditions 
in a high volume production line environment. These advantages 
are somewhat tempered by the high initial cost of tungsten and the 
"myth" about the limit availability. While the cost to mine and 
refine tungsten ore is high because of low concentrations, there is 
an abundance of free worid scurces more than sufficient o meet all 
known or projected requirements. including penetrators. 15 Many of 
these significant tungsten reserves are located in the Northwest 
Territory of Canada. However, the US production capability to reduce 
the low grade ore is minimal. 

(U) Each material has its own critical manufacturing 
areas (Table 5). Those associated with WA are the very narrow 
temperature range that must be maintained during the sfnterfng 

the design of the cold work die, and the capacity of 
y,'z$::; to reduce tungsten ore into ammonia paratungstate. 

US 
These 

critical areas have been successfully mastered in the production of 
the M735 WA Core; however, they require constant, careful attention. 

UN&A&FlFD 



Table 4 - (U) Some Advantages and Disadvantages in Production of DU and WA Penetrators 

TUNGSTEN ALLOY 

ADVANTAGES 

High Toughness (50% 
Higher) with High 
Strength 

Proven High Volume 
Production Facility 

g 
More Potential on 
Technical Limits 

z 
for Component 

3 

= 

DISADVANTAGES 

High Cost Raw Nat'1 

Myth of Limited 
Availability 

Never Quite Equals 
DU Penetration 

Limited US Reduction 
Capability 

DEPLETED URANIUM 

ADVANTAGES 

Better Penetration 
Against Complex 
Targets 

Low Initial Costs 
of Nat'1 

Std Metallurgy 
of Quench &l Age 
Alloy 

Higher Ductility 
w/High Strength 

Conventional 
Extrusion/Roll 
Process 

DISADVANTAGES 

Handling Restrictions 

Restricted R&D, 
Production, 
Training Firings 

No Proven High Volume 
Production, HZ0 
Quench, Straightening 

More Reactive Metal 

Experience with High 
Quality, Ductile, 
Tough, Coated) 
Only in DOE 

Goes thru Temp 
Transition 



UNCLASSIFIFP 
Table 5 - (U) Critical Manufacturing Areas 

Tungsten Alloy 

Narrow Temp Range for Sintering 
Cold Work Die Design 
APT - US Capacity 

Depleted Uranium 

Plant Flow Dependent on One Critical Press or Roll Mill 
Trace Element Sensitivity 
Water Quenchltlardenability 
Cold Straightening/Lot Variability 

(U) Likewise, the manufacture of U-3/4 Ti has several 
critical process sets. The production flow of material is dependent 
on a single extrusion press or rolling mill. This heavy equipment 
represents a large initial capital investment which renders a 
back-up system unfeasible. A major mechanical breakdown of this 
machinery could shut down the production facility for an unacceptable 
length of time. 

(U) The Army's demand for very high quality, high 
ductility DU penetrators has required the large volume producers to 
abandon their previous procedures and concentrate on the exacting 
specifications that tightly control chemical impurities, mechanical 
properties and imply the necessity for a vacuum solutionize and 
slow water quench. These specifications have been found to be 
workable as experience is acquired,but care and attention will be 
necessary throughout the manufacturing program. 

10 

UNCLASSWO 



UNClASSlflFD 
IV. (ll) cost 

(U) The cost of a pound of uranium hexafluoride (UF ) 
can range from 5.0125 to $2.50 depending on the quantity, vendar, 
type of procurement facility. means of transportation, and condition 
of delivery. Tungsten powder, in the somewhat equivalent state 
(ammonia paratungstate - APT) costs approximately $10 to $16 per 
pound. This tremendous difference in cost for raw material has 
fostered the notion that a concomitant cost differential would 
be evident in the production of penetrators, Recent production 
experience has shown this notion to be erroneous. 

(U) A direct cost comparison of two items of ammunition 
is ofter difficult due to numerous changes in the time, quantity 
and ground rules associated with the hypothetical or actual procure- 
ment. For the purpose of this discussion. a procurement of 500,000 
cartridges over a three year period was postulated. The 105mm XM774 
was used as an example, with the latest (May 1980) cost figures 
used as a basis for projections. Three years of production experience 
with the M735 Tungsten Alloy Core and initial FYDO contracts for 
the XM774 Depleted Uranium Core influenced the estimates. 

(U) In order to illustrate the effect that a WA vs DU 
penetrator has on unit price, the three costs are highlighted: the 
unit cost of a penetrator, the unit cost of a cartridge delivered to 
the field and the unit cost of a cartridge that has completed its 
lifecycle and has undergone demilitarization (has been scrapped). 

(U) Using the above 
3 
round rules, an itemized cost com- 

parfson was formulated (Table 6 . The procurement cost for the DU 
version is substantially lower than its WA counterpart. The $137 
WA core cost is approximately 77% higher than the $77 GU core cost. 
When the balance of the costs necessary to assemble and ship a 
cartridge to the field are considered. the cost difference is tempered 
by the larger unit cost and the WA cost is 15% higher. The dollar 
difference would still be $30 million for this hypothetical procurement. 

(U) When the full life cycle of the cartridge is ;;y;;;red. 
one must evaluate the demilitarization costs of each item. 
DU cartridge. the disassembly and disposal of the components repre- 
sents a one to three dollar expense, the higher value resulting if 
the DU core contaminates the aluminum sabot assembly which would require 
contaminated disposal. Demilitariraiton of the WA version would result 
in a profit due to the high scrap value of the WA. This large scrap 
differential has a major influence on the overall life cycle cost. 
bringing the WA version within one percent of the DU version. 



(U) It is likely that the decision maker would be influenced 
more by a multi-million dollar present cost difference than by a 
theoretlcal reimbursement in 20 - 30 years. The reality of a large 
acquisition cost difference should give the OU a favorable balance. 



Table 6 - (U) Itemized Cost Comparison for Procurement of@74 
DU and WA Cartridges 

MPTS & ASSY 

CORE 

LAP 

EDSP 

P&A 

REF HOW 

PA 

ACQUISITION COST 

DISP. COST (SCRAP CREDIT) 

LIFE CYCLE COST 

ASSUMPTIONS: 1. 
2. 
3. 

CARTRIDGE 
WITH 

DU CORE 

LOW HIGH -- 

94.84 94.84 

77.28 77.28 

144.48 144.48 

24.55 24.55 

45.23 45.23 

2.87 2.87 

1.08 1.08 

390.33 390.33 

1.10 2.98 

391.43 393.31 

CARTRIDGE 
WITH 

WA CORE HIGHER WA 

COST (%) 

94.84 - 

136.99 77% 

144.48 - 

24.55 

45.23 

2.87 - 

1.08 

450.04 15% 

(53.24) - 

396.80 1% 

Constant FY80 S's 
Total quantity of 500.000 procured over three years. 
High and low DU cost based on maximum and minimum 
dfsposal costs. 



v. m Performance (U) 

(U) For the purpose of this discussion, performance is 
considered analagous with ability to withstand gun launch and to 
penetrate armor targets. Both materials have very high densities 
and, when properly designed into high length-to-diameter cores, provide 
efficient penetration of thick, complex armors. 

(U) The behavior and resulting performance of the two 
materials is distinctly different and is often dependent on the com- 
bination of mechanical properties chosen. Due to.its lower ductility 
and higher modulus, the tungsten penetration tends to break into 
pieces in the nose area or along its length. If this phenomenon is 
ccuntered by increasing the ductility of the rod, the result would be 
an inefficient penetrator due to mushrooming of the nose and/or severe 
bending. If improved performance against a specific target is desired, 
two basic options are available to the tungsten designer. The mechanical 
properties of the rod can be manipulated, or the front of the rod can 
be designed to include precurser penetrators. attenuators, preferential 
notches, etc. all in an attempt to mimimize breaking of the rod. 

(U) The problems associated with the latter approach are 
that changes made to optimize performance versus a specific target 
tend to compromise performance versus other targets. Given the 
multitude of target arrays currently required, this task has become 
exceedingly difficult. 

(U) The behavior of a 00 penetrator attacking an armor 
array is noticeably different from that of its WA counterpart. The 
DU rod tends to "ablate" as it passes through armor. Its nose is 
worn away in relatively fine pieces while a reasonably efficient 
front cross section is constantly presented to the remainder of the 
target. Although minor bending of the rod may be observed, longi- 
tudinal breaking is not likely, This behavior is primarily attri- 
buted to the high duntility, high strength and low elastic modulus 
(e.g. sound speed) inherent in DU penetration. 

(I) The performance differences between DU and WA penetrators 
is shown in Figures 1, 2 and 3. Figure 1 compares performance of the 
two materials when tested against the NATO Heavy Single Target. The 
lower limit velocity represents increased penetration. The graph shows 
that the advantages of DU are not manifested when attacking this target 
if the penetrator is low density, light and short. In fact, if the 
graphic representation of the rather scattered data is current, WA 
can outperform 00 under those condttions. As the penetrator increases 
in density and length-to-diameter ratio, the DU version becomes increasingly 
more effective. With geometrlcs and materlals typical of the 1051~~ 
Xl@33 and 12Omn XH829 the superiority of DU becomes SlgnifiCant. 



FIGURE 1. -PERFORMANCE OF VARIOUS DU AND WA PENETRATORS VERSUS THE NATO HEf.VY SINGLE TARGET (U) 
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FIGURE 2. I) PERFORMANCE OF VARIOUS OU AND WA PENETRATORS VERSUS Tl!E NATC HEAVY TRIPLE TARGET (U) 
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F This trend is magnified as the target arrays become more 
complex. igure 2 representing NATO Heavy Triple, shows that the DU 
outperforms the WA regardless of material or geometry f the penetrator. 
This trend is equally profound when these types of pr &tiles are 
evaluated against modern, special armor targets. 

.m The significance of this difference can be seen in Table 7 
where the effective range of the XM833 and XM82g are shown for DU and WA 
for several postulated targets representative of current and future 
Soviet tanks. Though the difference in effective range between the 
materials is evident with the conventional targets, the WA still provides 
a reasonable effectiveness. However, as the targets become more difficult 
the WA core effectiveness drops off to zero. Although it is recognized 
that a zero effective range versus a simulated target is an overdramati- 
zation of ineffectiveness, the inability of the WA versions to penetrate 
critical areas of a future tank would seriously degrade the overall 
kill probability. 

(U) This discrimination in penetration performance is probably 
the single-most important factor justifying the choice of DU over WA. 



Table 7 - m Effective Range (KM) of KE Rounds vs. Modern Targets" (U) 

TARGET m 

PENETRATOR 
PROJECTILE MATERIAL HS* HT* 

XM833 DU 11.0 9.1 

XM833 WA 4.5 4.0 

XM829 DU 12.7 10.8 

XM829El WA 8.6 7.3 

* HS = NATO Heavy Single 
HT = NATO Heavy Triple 

INCREASED DIFFICULTY TARGETS 

5.5 6.6 6.5 3.3 

4.8 4.1 3.9 - 

12.6 8.3 8.2 5.0 

9.8 5.9 5.8 - 

18 
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VI. (U) Safety, Environmental & Development (U) 

(U) The life cycle management of tungsten alloy kinetic 
energy cartridge is similar to that of any other inert material used 
in munitions and as such required no special handling or unique 
precautions. 

(U) Having been sensitized to adverse air quality emissions 
resulting from repetitive armor penetration testing of DU munitions, 
DARCOM Safety formally required TECOM to sample and document the air 
quality from WA testing, This situation is viewed as temporary as it is 
unlikely that a requirement for enclosed or constantly monitored 
tungsten testing will endure. 

(U) On the other hand, the utilization of DU as a penetrator 
material mandates a host of special requirements. DU is currently con- 
sidered a Source Material and as such must be controlled by licensed 
installations only. Each licensee must satisfy all conditions specified 
in his license application. The Nuclear Regulatory26ommission (NRC) 
is responsible for license approval and compliance. 

(U) The extent of special handling and precautions necessary 
depend on the operations being performed under the license. During the 
manufacture, armor penetration testing and operations where the DU is 
manipulated or processed requires rather extensive regulation. With 
other operations where the DU is simply handled, such as assembly into 
a projectile, load-assemble-pack or depot transportation, special require- 
ments are minimal. 

(U) The XM774. being the US Army's first production item 
utilizing DU, was the cand$fgSn for a wealth of special studies involving 
lab and field experiments. Each step in the life cycle of the XM774 
was critiqued to determine special procedures required. A conservative 
approach was adapted wherein data from testing and calculations was 
assumed to be required. The burden of proof was placed on the program. 

(U) To date. the XM833 and XM829 have not been required to 
shoulder these same burdens. Two factors might be responsible for this 
low key atmosphere: The personnel normally involved in the safety and 
environmental issues have been preoccupied with the XM774. and the majority 
of the studies and tests conducted on the XM774 apply directly to the 
other two rounds. As can be seen from Table 8. the estimated funding and 
number of tasks deemed necessary for the XT4833 and XM829 are considerably 
reduced from that required of the XM774. Some repetitive testing will 
be required on the 12Omm XM829 due to the utilization of a new propellant 
ignition system. 
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(U) A similar situation exists with the special capital 

equipment necessary to support the production and fielding of a 
DU anti-tank cartridge. A considerable investment was made in 
manufacturing facilities and in test range equipment (e.g. armor 
plate target enclosure). Once established and proven, these 
facilities will be adaptable to the follow-on programs. The invest- 
ments associated with the XM833 and XM82g will be required primarily 
due to the unique design features of each round, and not necessarily 
to support DU deployment. 

(U) A less tangible yet very disturbing possibility is 
that the XM774 (and by association the XM833 and XM82g) will not 
be deployed to NATO forces in Europe due to internal or external 
political considerations. The obvious solution to this potential 
problem is to jointly develop a tungsten alloy sister round. This 
after considered "insurance policy" option has been presented on 
several occasions but never funded. As an example, a proposal 
submitted in FY7g for a tungsten companion round for the XM833 
would have required an additional five million dollars of R@T&E 
funds and could have been type classified concurrently. Despite 
its inferior penetration ability as compared to the parent DU 
version, it could have exceeded the performance of the DU XM774. 

(U) An attractive offshot of a potential WA XM833 
development would be foreign military sales (FMS). A very volital 
market exists with our allies to develop or procure the most effective 
tank amnunition candidates. A high performance XM833 WA would be 
an extremely attractive option. The current US policy (law) 
that a weapon cannot be developed exclusively for potential FwS 
negates what otherwise would serve as a major justification for 
development of the sister rounds. 
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Table 8 - (U) Special Studies & Tests Required to Support Fielding 
of a DU Cartridge (Approximate) 

XM774/ 
TASK M735El XM833 XM8.29 -- 

Hazard Burn Test 

External Radiation 

Tank Radiation 

DA Personnel Training 

Air Quality Calculations 
Armor Test Air Sampling 

APG Environmental Monitoring 

Tank Burn Test 

Igloo Hazards Calcualtions 

(NR - Not Required) 
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$ 60K 

20K 

30K 

40K 
74K 

160K 
120K 

70K 

80K 
$655~ 

NR 
$30K 

2DK 

NR 

3DK 
NR 
NR 

NR 
NR 
$80~ 

$ 80K 
30K 

50K 

NR 

NR 
50K 

NR 

NR 
NR 

$210K 
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